Solid Electrolyte CO2 Sensor Using NASICON and Li-based Binary Carbonate Electrode Sheng YAO, Sachio HOSOHARA, Youichi SHIMIZU, Norio MIURA, Hozumi FUTATA, and Noboru YAMAZOE* Department of Materials Science and Technology, Graduate School of Engineering Sciences, Kyushu University, Kasuga, Fukuoka 816 + Yazaki Meter Co. Ltd., Hamakita, Shizuoka 434 A solid electrolyte CO_2 sensor was developed by combining an Na^+ conductor and a Li-based binary carbonate auxiliary electrode represented by Li_2CO_3 -Ca CO_3 (1.8 : 1 in molar ratio: eutectic mixture). It responded to CO_2 quickly and reversibly, following a Nernst equation excellently in the CO_2 concentration range 10^2 - 10^5 ppm. In addition, Li_2CO_3 -Ca CO_3 electrode was found to be stable to deliquescence even when kept under a highly humid condition at 30 °C for more than 700 h. As the control of CO₂ increases its importance in various technologies, there is an ever growing need for inexpensive CO₂ sensors with high sensitivity and selectivity. Solid electrolyte CO₂ sensors are of particular interest from the viewpoint of low cost, high selectivity and simple element structure.¹⁻⁴) We have proposed the use of binary carbonate electrodes, Na₂CO₃-MCO₃ (M = Ca, Sr, Ba), to improve the sensing characteristics of Na⁺-conductor (NASICON)-based CO₂ sensors.^{5,6}) These electrodes in fact gave very excellent CO₂ sensing properties at elevated temperatures compared with a conventional pure Na₂CO₃ electrode. Subsequent examinations from a practical viewpoint, however, disclosed that these electrodes were not stable enough during storage at room temperature under extremely humid conditions near 100% relative humidity because of their hygroscopic nature. This situation prompted us to seek for better electrode materials. As a result, Li-based binary carbonate electrodes, Li₂CO₃-MCO₃ (M = Ca, Sr, Ba), were found to be very promising. The use of these electrode for the NASICON based electrochemical cell not only brings about even better CO₂ sensing properties but also makes the sensor very stable to deliquescence during storage in a highly humid atmosphere at room temperature. This paper deals with the sensing characteristics, mechanism, and deliquescence-resistant properties of this newly developed CO₂ sensor. The sensor elements were fabricated as shown in Fig. 1. A disc of sodium ion conductor (NASICON, NGK Co. Ltd.), 8 mm in diameter and 0.5 mm thick, was fixed on the end of a quartz glass tube with an inorganic adhesive. The sensing electrode was fabricated by fixing a gold mesh (100 mesh) on Fig. 1. Structure of CO₂ sensor element. A: Au-mesh, B: Carbonate electrode, C: Pt-wire, D: NASICON, E: Inorganic adhesive, F: Pt-black, G: Pt-mesh, H: Quartz glass tube. the outside surface of the disc, followed by covering it with pure Li₂CO₃ or a mixture of Li₂CO₃ and MCO_3 (M = Ca, Sr, Ba) by meltingquenching method. The counter electrode (platinum black) was applied on the inside surface of the disc and mechanically contacted to a platinum mesh attached with a Pt lead. The electrode was always exposed to the atmospheric air. Sensing experiments were carried out in a conventional flow Sample gases were apparatus. prepared from a parent gas, 2000 ppm CO₂ diluted in air or pure CO₂, by mixing it with synthetic air and pure oxygen. The oxygen concentration of the sample gases were always kept constant at 21 vol%. To prepare Fig. 2. Sensing performance of the CO₂ sensor element fitted with pure Li₂CO₃. (a),(b): Response curve to 245 ppm CO₂ in dry air (a) and wet air (P_{H2O}: 0.86 kPa) (b), (c),(d): Dependence of EMF on the CO₂ concentration in dry air (c) and wet air (P_{H2O}: 0.86 kPa) (d). humid sample gases, dry sample gases were mixed with humid air having bubbled through liquid water. The sensor response, EMF, was measured with a digital electrometer (Advantest, TR 8552) at 500 °C under a total flow rate of 100 cm³/min. The stability of the carbonates to deliquescence was tested at room temperature in a closed vessel, the atmosphere of which was equilibrated with pure water (relative humidity ca. 100%). The carbonates were melted and quenched in the same way as done for the electrodes, and their weight gains during the storage in the vessel were measured intermittently. The CO₂ sensing properties of an element fitted with a pure Li₂CO₃ electrode was first examined. As shown in Fig. 2(a), the element responded rather well to switching from dry synthetic air (0 ppm CO₂) to dry CO₂, with the 90% response time of ca. 60 s to 245 ppm CO₂. The EMF response was linear to the logarithm of CO₂ concentration as shown in Fig. 2(c), with a Nernst's slope of 73 mV/decade, or n = 2.1 where n is the number of electrons involved in the electrode reaction per CO₂ molecule. In the presence of water vapor, however, the responses were found to be seriously degraded. The rates of response and recovery became smaller, failing to reach steady EMF levels even in 20 min, as shown in Fig. 2(b). In addition, the EMF responses to CO₂ showed large deviations to the positive side in the presence of water vapor as shown in Fig. 2(d), where the EMF levels attained in 20 min after the introduction of wet CO₂ (water vapor pressure 0.86 kPa) are plotted against CO₂ concentrations. Quite interestingly, the use of a binary electrode, Li₂CO₃-CaCO₃ (1.8: 1.0 in molar ratio), was found to bring about drastic improvements in CO₂ sensing properties. First, it gave very quick responses: the times for 90% response and recovery were both as short as 8 s or shorter for 245 and 860 ppm CO₂, as shown in Fig. 3(a). As compared with the performances of Na₂CO₃-BaCO₃ electrode previously reported, the above response time was almost the same, while the recovery time was shortened to about one third. Second, the responses were totally indifferent of the presence of water vapor up to 1.7 kPa as shown in Fig. 3. Response transients of the element using Li₂CO₃-CaCO₃ electrode (500 °C). (a) dry CO₂, (b) wet CO₂ (1.7 kPa-H₂O). Fig. 4. EMF vs. CO₂ concentration for the element using Li₂CO₃-CaCO₃ electrode at 500 °C. (a) dry CO₂, (b) wet CO₂ (0.86 kPa-H₂O). Fig. 3(b). As a result, the EMF response was perfectly linear to the logarithm of CO₂ concentration in the whole range tested (120-250000 ppm) without suffering any interference by water vapor, as shown in Fig. 4. The Nernst's slope, 76.7 mV/decade, coincides precisely with a 2-electron reaction of CO₂. It was confirmed by separate experiments that similar performances were also shown by the other binary carbonate systems, Li₂CO₃-SrCO₃ and Li₂CO₃-BaCO₃. The present sensors are expressed as a galvanic cell of the form, The cell combines an Na⁺ conductor with an Na⁺-free carbonate electrode. It is important that despite such an unconventional combination the cell exhibits excellent CO₂ sensing performances. Probably the electrochemical connection between the ionic conductor and the electrode is achieved by a partial ionic exchange between Na⁺ of NASICON and Li⁺ of the electrode in the vicinity of their interface. On the assumption of such electrochemical connection, the working mechanism of the present sensors is considered to be very similar to that operative in the sensor using Na-based carbonate electrodes.^{5,6}) The sensing electrode reaction is tentatively assumed to be as follows, although the actual reaction should be investigated in the future study, $$2Li^{+} + CO_{2} + (1/2)O_{2} + 2e^{-} = Li_{2}CO_{3}$$ (in electrode). (1) When the counter electrode reaction is expressed as Na₂O (in NASICON) = $$2Na^+ + (1/2)O_2 + 2e^-$$, (2) the overall chemical reaction is written as $$Li_2CO_3 + 2Na^+ = 2Li^+ + Na_2O + CO_2.$$ (3) Under the constant activities of Li₂CO₃, Na⁺, Li⁺ and Na₂O, EMF can be expressed as $$E = E^{O} + (RT/2F)\ln P(CO_{2}). \tag{4}$$ The experiments have shown that the element fitted with a pure Li_2CO_3 electrode obeys this equation approximately for dry CO_2 , whereas water vapor, if present, seriously interferes with its sensing performances. On the other hand, the element fitted with a Li₂CO₃-CaCO₃ electrode has been shown to follow this equation very well irrespectively of the water vapor present, with its Nernst's slope agreeing perfectly with the theoretical value (76.7 mV/decade at 500 °C). The nature of the water vapor interface with the pure Li₂CO₃ electrode as well as that of the drastic improvements brought about by the binary carbonate systems are under investigation. Most important merit of the Li-based binary carbonate electrodes is their remarkable stability to deliquescence. Figure 5 shows weight gains of four carbonate samples, pure Na₂CO₃, Na₂CO₃-BaCO₃, pure Li₂CO₃, and Li₂CO₃-CaCO₃, during storage under a very humid condition (R. H.: ca. 100%) at room temperature. Because of the high hygroscopicity and large water-solubility Fig. 5. Weight gains during storage in a very humid atmosphere (R.H.: ca. 100 %) at 30 °C. (a) pure Na₂CO₃, (b) Na₂CO₃-BaCO₃ (1:1.7), (c) pure Li₂CO₃, (d) Li₂CO₃-CaCO₃ (1.8:1). of Na₂CO₃, pure Na₂CO₃ and Na₂CO₃-BaCO₃ system gained weight most rapidly and began to form a liquid phase in 5 h and 10 h, respectively. Pure Li₂CO₃ gained weight more slowly but still began to form a liquid phase in about 20 h. On the other hand, the weight gain of Li₂CO₃-CaCO₃ proceeded very slowly to be almost saturated at about 7% in 200 h, without showing any significant changes in physical appearance of the sample. This implies that the electrode using Li₂CO₃-CaCO₃ can stand a very humid atmosphere for a considerable span of time, and thus brings about a great ease in the storage and handling of the sensor in practice. In conclusion, Li-based binary carbonate electrodes like Li_2CO_3 -CaCO3 can be introduced successfully into a NASICON-based electrochemical cell. The resulting CO2 sensor is excellent in sensing behavior at high temperature (500 °C) and very stable to deliquescence during storage at room temperature. This work was partly supported by a Grant-in-Aid for Scientific Research from Ministry of Education, Science and Culture of Japan, and a grant from Iketani Science and Technology Foundation. ## References - 1) M. Gauthier and A. Chamberland, J. Electrochem. Soc., 124, 1579 (1977). - 2) T. Ogata, S. Fujitsu, M. Miyayama, K. Koumoto, and H. Yanagida, J. Mat. Sci. Lett., 5, 285 (1986). - 3) Y. Saito and T. Maruyama, Solid State Ionics, 28-30, 1644 (1988). - 4) N. Imanaka, T. Kawasato, and G. Adachi, Chem. Lett., 1990, 497. - 5) S. Yao, Y. Shimizu, N. Miura, and N. Yamazoe, Chem. Lett., 1990, 2033. - 6) N. Miura, S. Yao, Y. Shimizu, and N, Yamazoe, "Digest of Technical Papers, Transducers '91", IEEE, San Francisco, (1991), p. 558. (Received September 5, 1991)